

Reyrolle

7SG22 - Iota

Input/Output Units with Logic Programming

Answers for energy
SIEMENS
SIEMENS
siemens-russia.com

7SG22 - Iota

Input/Output Units with Logic Programming

Fig 1. 7SG22

Introduction

The lota range of Common Services Modules are programmable logic controllers designed for general application within the substation environment. Typical applications include direct replacement for hardwired relay logic schemes. PLCs developed for the industrial market typically require additional external protection to ensure reliable operation in the electrically hostile substation environment. Siemens Protection Devices Ltd has a long history of designing modular protection and control relays which can withstand the environmental extremes that an electricity substation must endure and this unit is constructed using modules already proven in this environment.

The relay consists of a combination of status inputs, output relays, current and voltage level detector modules which can be interconnected using logical elements such as AND, OR, NOT gates, pickup/dropoff timers, counters and latches to fulfil many operational interlocking requirements.

The lota can accommodate a total of 59 input and 61 output points consisting of a combination of status inputs together with output relays. The basic models have 3 status inputs and 5 output relays on the power supply module. Additional Input and output modules can be added to the relay. The maximum number is only limited by available empty module slots in the case.
$16 / 32$ user defined LEDs are also available to the logic schemes for local indication of functions.

The voltage modules and current modules have 4 analogue channels. Each channel has a settable pick up level \& time delay and its output is fed into the logic as an input. The measured values can be displayed in the instruments and are available via the IEC communications in a measurand.

Features

Fully programmable scheme logic using Reylogic Programmable alarm/indication LEDs with text legend
Analogue measurements
Flexible number of inputs and outputs
Fault, event and waveform recorder
IEC60870-5-103/MODBUS fibre optic
communications
Front RS232 communication port
IRIG-B time synchronisation input
Continuous self monitoring

Description

Reylogic

Reylogic is a Windows based schematic capture program used for creating configuration logic diagrams for use in lota. The inputs and outputs may be interconnected with up to 64 timers, 64 counters and 64 latches along with combinational logic consisting of AND, OR and NOT gates limited only by the choice of scan rate for the logic. The default scan rate is 2.5 milliseconds but this may be adjusted to accommodate more complex logic schemes.

The logical elements are simply dragged and dropped onto the drawing page and interconnections formed by dragging a connection wire from the output of an element to the input of another. This greatly simplifies scheme configuration over other techniques such as ladder logic used in industrial grade PLCs.

All timers and counters, drawn on a logic diagram and set to be visible, appear in the setting lists accessible via the front fascia to allow on-site modifications without having to use a PC to modify the logic diagrams. All Boolean points marked as external inputs on the schematic package appear in the settings list with a matrix setting which allows any combination of output relays and fascia flags to be selected.
Latches and counters can be configured to retain their state if the power supply is interrupted.

Fascia unit

The lota has a user friendly HMI interface which allows simple modifications to timer and counter settings as well as simple reconfiguration of the allocation of inputs and outputs.
The input and output points are fully programmable to allow easy modification. In addition all Boolean
outputs are available in the menus and can be configured to give indications on the LED front panel. LEDs can be selected to be hand or self reset.

Measurement and Trending

Analogue values can be displayed in primary or secondary quantities on the LCD screen via the Instruments Menu. In addition the values can be obtained via the IEC60870-5-103 communications.

The IEC events can be edited to report any output Boolean state as an event.

The IEC command files can also be edited to allow remote operation of the input Booleans in the logic diagram.

Real time measurements
Primary and Secondary currents
Primary and Secondary voltages
Status inputs
Output contacts

System Data

Sequence of Event records
Up to 500 events are stored and time tagged to 1 ms resolution. These are available via the communications.

Fault records

The last 10 fault records are available from the lota fascia along with time and date of operation.

Disturbance recorder

The Waveform Recorder may be triggered from a logic Boolean or an external input and has a configurable pre-fault trigger. Up to 10 seconds of fault waveforms may be stored with associated analogue and digital values. This is user configurable as ten 1-second records, five 2second records, two 5 -second records or one 10second record.

The IEC60870-5-103 protocol allows remote operators to control plant and receive indication and metering information.

Fibre-optic communications ports are provided on the rear of the relay and will be optimised for $62.5 / 125 \mu \mathrm{~mm}$ glass-fibre using BFOC/2.5 (ST ${ }^{\circledR}$) bayonet-style connectors as standard.

In addition users may interrogate the lota locally with a laptop PC via the RS232 port on the front of the relay. The Reydisp Evolution software described as follows allows the user to do this.

Support Software

Reydisp Evolution

Fig 2. Typical Reydisp Evolution screenshot
Reydisp Evolution provides the means for the user to apply setting to the lota, interrogate settings and retrieve disturbance waveforms from the relay.

Reylogic toolbox

Fig 3. Example Reylogic screenshot
Reylogic allows users to design their own logic schemes and apply them to the relay. The design is built from simple building blocks of combinational logic (and, or, exclusive or) and sequential logic (timers, counters and latches). These are dropped onto the page and wired to form the scheme.

When the design is complete it can be tested offline by simulation in the Reylogic package. The test files and results can be stored as a record of the tests and for future repeatability.

The logic diagram along with IEC event and command configuration files are built into a project which can be downloaded to the lota. The logical inputs and outputs of the scheme can then be assigned to physical inputs and outputs in the lota in the settings file via Reydisp or fascia.

Technical Information

Performance data to IEC 60255-3
Characteristic energising quantities

AC Current	$1,5 \mathrm{~A}$
AC Voltage	63.5 V line-neutral
	110 V line-line 50 Hz

Auxiliary Energising Quantity
DC power supply

Nominal Voltage	Operating range VDC
$48,110 \mathrm{~V}$	37.5 to 137.5
220 V	176.0 to 280.0

DC status inputs

Nominal Voltage	Operating range VDC
$30,34 \mathrm{~V}$	18.0 to 37.5
$48,54 \mathrm{~V}$	37.5 to 60.0
$110,125 \mathrm{~V}$	87.5 to 137.5
$220,1250 \mathrm{~V}$	175.0 to 280.0

The status voltage need not be the same as the main energising voltage.

Electricity Association ESI48-4
The $30 / 34 \mathrm{~V}$ and $48 / 54 \mathrm{~V}$ inputs meet the requirements of ESI48-4 ESI 1. However, the $110 / 125 \mathrm{~V}$ and $220 / 250 \mathrm{~V}$ inputs will operate with a DC current of less than 10 mA . If $110 / 125 \mathrm{~V}$ or 220/250V inputs compliant with ESI48-4 ESI 1 are required, an lota with $48 / 54 \mathrm{~V}$ status can be supplied with external dropper resistors as follows:

Nominal Voltage	Resistor Value	Wattage
$110,125 \mathrm{~V}$	$2 \mathrm{k} 7 \pm 5 \%$	2.5 W
$220,250 \mathrm{~V}$	$8 \mathrm{k} 2 \pm 5 \%$	6.0 W

Status Input Performance

Parameter	Value
Minimum DC current for operation (30/34V and $48 / 54 \mathrm{~V}$ inputs only)	10 mA
Reset/Operate Voltage Ratio	$\geq 90 \%$
Typical response time	$<5 \mathrm{~ms}$
Typical response time when used to energise an output relay contact Minimum pulse duration	$<15 \mathrm{~ms}$

Each status input has an associated timer that can be programmed to give time delayed pick-up. When a 20 ms pick-up setting value is applied the status inputs will not respond to the following:

- 250 V RMS $50 / 60 \mathrm{~Hz}$ applied for two seconds through a $0.1 \mu \mathrm{~F}$ capacitor.
- 500 V RMS $50 / 60 \mathrm{~Hz}$ applied between each terminal and earth.
- Discharge of a $10 \mu \mathrm{~F}$ capacitor charged to maximum DC auxiliary supply voltage.

Indication

Relay Healthy	
Method	Green LED
Healthy	Steady
Failure	Flashing or extinguished
Indication	16/32 Programmable RED
Method	LEDs
Settings and Instrumentation	
Method	Backlit LCD

Protocol	IEC 60870-5-103/MODBUS
RS-232 interface	
Location	Fascia
Form	25 -pin female D-type connector
Fibre interface	
Location	Rear
Quantity	$2 \times$ Rx, $2 \times$ Tx
Form	BFOC/2.5 (ST®) bayonet connector
COM1	75-115200 baud
Baud rate	Fibre-optic port
Interface	75-115200 baud COM2
Baud rate	Auto-switches between Fibre-optic and RS-232 ports
Interface	

General Accuracy

Reference conditions

General	IEC 60255
Current Settings	100\% of In
Auxiliary supply	Nominal
Frequency	50 Hz
Ambient temperature	$20^{\circ} \mathrm{C}$
General settings	
Parameter	Value
Transient Overreach of Disengaging Time (${ }^{1}$)	< 42 ms
Overshoot Time	$<40 \mathrm{~ms}$

${ }^{(1)}$ Output contacts have a minimum dwell time of 100 ms , after which the disengage time is as above.

Accuracy Influencing Factors
Temperature

Thermal Withstand

AC Current Inputs		
continuous	Phase	$3.0 \times 1 \mathrm{n}$
10 minutes		3.5 xln
5 minutes		$4.0 \times \mathrm{ln}$
2 minutes		$6.0 \times \mathrm{ln}$
1 second	5A Phase/Earth	400 A
	1A Phase/Earth	100 A
	5A Phase/Earth	2500 A
1 cycle	1A Phase/Earth	700 A
AC Voltage Inputs		
continuous	3.5 xVn	

Burdens

Measuring Inputs

AC Current Inputs
5A Phase/Earth
1A Phase/Earth
AC Voltage Inputs $\leq 0.01 \mathrm{VA}$

Auxiliary supply

Quiescent (Typical)	13 W
Maximum	25 W

Burdens are measured at nominal rating.

Output Contacts

Contact rating IEC 60255-23

Carry Continuously	$5 A$ AC or DC
Make and Carry	$(L / R \leq 40 \mathrm{~ms}$ and $\mathrm{V} \leq 300$ volts)
0.5 seconds	20 A AC or DC
0.2 seconds	30 A AC or DC
Break	(I $\leq 5 \mathrm{~A}$ and $\mathrm{V} \leq 300$ volts)
ac resistive	1250 VA
ac inductive	250 VA @ PF ≤ 0.4
dc resistive	75 W
dc inductive	30 W @ L/R $\leq 40 \mathrm{~ms}$
	50 W @ L/R $\leq 10 \mathrm{~ms}$

Number of Operations

Minimum number of operations

Recommended load
Minimum
recommended load 0.5 W , limits 10 mA or 5 V

Environmental

Temperature IEC 68-2-1/2

Operating	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Humidity IEC 68-2-3

Operational test	56 days at $40^{\circ} \mathrm{C}$ and $95 \% \mathrm{RH}$

Transient Over voltage IEC 60255-5

Between all terminals and earth or	5 kV
between any two independent circuits without damage or flashover	$1.2 / 50 \mu \mathrm{~s}$

Insulation IEC 60255-5

RMS levels for 1 minute	
Between all terminals and earth	2.0 kV
Between independent circuits	2.0 kV
Across normally open contacts	1.0 kV

5 gn , Shock response, 11 ms	$\leq 5 \%$ variation
15 gn, Shock withstand, 11 ms	
10 gn, Bump test, 16 ms	
Seismic IEC 60255-21-3 Class 1	
1 gn , Seismic Response	$\leq 5 \%$ variation
Mechanical Classification	
Durability	In excess of 10^{6} operations

Immunity

Auxiliary DC Supply IEC 60255-11	
Allowable superimposed ac component	$\leq 12 \%$ of dc voltage
Allowable breaks/dips in supply (collapse to zero from nominal voltage)	$\leq 20 \mathrm{~ms}$
High Frequency Disturbance IEC 60255-22-1 Class III	
2.5 kV , Longitudinal mode	$\leq 3 \%$ variation
1.0 kV , Transverse mode	
Electrostatic Discharge IEC 60255-22-2 Class III	
8kV, Contact discharge	$\leq 5 \%$ variation
Radio Frequency Interference IEC 60255-22-3	
$10 \mathrm{~V} / \mathrm{m}, 80$ to 1000 MHz	5 5% variation
Fast Transient IEC 60255-22-4 Class IV	
$4 \mathrm{kV}, 5 / 50 \mathrm{~ns}, 2.5 \mathrm{kHz}$, repetitive	$\leq 3 \%$ variation
Conducted RFI IEC 60255-22-6	
$10 \mathrm{~V}, 0.15$ to 80 MHz	$\leq 5 \%$ variation

Emissions

Conducted limits IEC 60255-25		
Frequency Range	Limits $\mathrm{dB}(\mathrm{mV})$	
	Quasi-peak	Average
$\begin{aligned} & 0.15 \text { to } \\ & 0 . \mathrm{MHz} \end{aligned}$	79	66
$\begin{aligned} & 0.5 \text { to } 30 \\ & \mathrm{MHz} \end{aligned}$	73	60
Radiated limits IEC 60255-25		
Frequency Range		Limits at 10 m
		Quasi-peak, $\mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$
30 to 230 MHz		40
230 to 10000 MHz		47

Mechanical

Vibration (Sinusoidal)	IEC $60255-21-1$ Class 1
0.5 gn, Vibration response	$\leq 5 \%$ variation
1.0 gn, Vibration endurance	
Shock and Bump IEC $60255-21-2$ Class 1	

Case Dimensions

The lota is supplied in either a size E8, size E12 or size E16 case depending on the number of analogue input sets and the status input and output requirement

Fig 4. Epsilon E8 Case

NOTE:
THE $\varnothing 3,6$ HOLES ARE FOR M4 THREAD FORMING (TRILOBULAR)
SCREWS. THESE ARE SUPPLIED AS STANDARD AND ARE
SUITABLE FOR USE IN FERROUS/ALUMINIUM PANELS 1.6 mm
THICK AND ABOVE. FOR OTHER PANELS, HOLES TO BE M4
CLEARANCE (TYPICALLY $\varnothing 4.5$) AND RELAYS MOUNTED USING M4 MACHINE SCREWS, NUTS AND LOCKWASHERS (SUPPLIED IN
PANEL FIXING KIT).

Fig 5. Epsilon E12 Case

NOTE:
THE $\varnothing 3,6$ HOLES ARE FOR M4 THREAD FORMING (TRILOBULAR)
SCREWS. THESE ARE SUPPLIED AS STANDARD AND ARE
SUITABLE FOR USE IN FERROUS/ALUMINIUM PANELS 1.6 mm
THICK AND ABOVE. FOR OTHER PANELS. HOLES TO BE M4
CLEARANCE (TYPICALLY $\varnothing 4.5$) AND RELAYS MOUNTED USING
M4 MACHINE SCREWS, NUTS AND LOCKWASHERS (SUPPLIED IN
PANEL FIXING KIT).

Fig 6. Epsilon E16 case

Typical Connection Diagram

Fig 7. Typical connection diagram

IOTA (100 series)

Input/output units.

Relay type
 series - Input/Output Units
 Functionality

 additional I/OBinary Inputs, Binary Outputs and 4 Voltage Inputs, 1 module positions for additional I/O
Binary Inputs, Binary Outputs and 4 Current Inputs, 1

Auxiliary supply /binary input voltage
30 V DC auxiliary, 30 V DC binary input 30 V DC auxiliary, 48 V DC binary input 48/110 V DC auxiliary, 48 V DC bina input ${ }^{1}$ 48/110 V DC auxiliary, 48 V DC binary input ${ }^{1}$)

DC auxiliary, 110
220 V DC auxiliary, 110 V DC binary input

Additional I/O Modules ${ }^{2}$)
3 Binary Inputs / 5 Binary Outputs (incl. 3 changeover), basic I/O
11 Binary Inputs / 13 Binary Outputs (incl. 3 changeover), 1 module
19 Binary Inputs / 21 Binary Outputs (incl. 3 changeover), 2 modules
27 Binary Inputs / 13 Binary Outputs (incl. 3 changeover), 2 modules

Frequency
Not applicable
50Hz

Not applicable

Fibre optic (ST-connector) / IEC 60870-5-103 or Modbus RTU
$\frac{\text { Relay type }}{200 \text { series }}$ - Input/Output Units

Functionality

Binary Inputs and Binary Outputs, 4 module positions for additional I/O
Binary Inputs, Binary Outputs and 4 Current Inputs, 3 module positions for additional I/O
Binary Inputs, Binary Outputs and 4 Current Inputs, 3 module positions for additional I/O
Binary Inputs, Binary Outputs, 4 Current and 4 Voltage Inputs, 2
module positions for additional I/O
Auxiliary supply /binary input voltage
30 V DC auxiliary, 30 V DC binary input
30 V DC auxiliary, 48 V DC binary input
48/110 V DC auxiliary, 30 V DC binary input
48/110 V DC auxiliary, 48 V DC binary input ${ }^{1}$)
48/110 V DC auxiliary, 110 V DC low burden binary input
220 V DC auxiliary, 110 V DC low burden binary input
220 V DC auxiliary, 220 V DC low burden binary input
Additional I/O Modules ${ }^{2}$)
3 Binary Inputs / 5 Binary Outputs (incl. 3 changeover), basic I/O
11 Binary Inputs / 13 Binary Outputs (incl. 3 changeover), 1 module
19 Binary Inputs $/ 21$ Binary Outputs (incl. 3 changeover), 2 modules
27 Binary Inputs $/ 29$ Binary Outputs (incl. 3 changeover), 3 modules
27 Binary Inputs / 29 Binary Outputs (incl. 3 changeover and $4 \mathrm{~N} / \mathrm{C}$), 3 modules
27 Binary Inputs / 13 Binary Outputs (incl. 3 changeover), 2 modules
35 Binary Inputs / 37 Binary Outputs (incl. 3 changeover), 4 modules 35 Binary Inputs / 37 Binary Outputs (incl. 3 changeover and 4 N/C), 4 modules

Frequency
Not applicable
50 Hz
60 Hz
Nominal current
$1 / 5 \mathrm{~A}$

Voltage inputs
Not applicable
63.5/110 V AC

Housing size
Case size E12 (4U high)
Communication interface
Fibre optic (ST-connector) / IEC 60870-5-103 or Modbus RTU

[^0]Product description \quad Variants Order No.

IOTA (300 series)

7 S G $22 \square \square-0 \square \square \square$ Input/output units.

Relay type

300 series - Input/Output Units

Functionality

Binary Inputs and Binary Outputs, 6 module positions for additional I/O
Binary Inputs, Binary Outputs and 4 Voltage Inputs, 5 module positions for additional I/O
Binary Inputs, Binary Outputs and 4 Current Inputs, 5 module positions for additional I/O Binary Inputs, Binary Outputs, 4 Current and 4 Voltage Inputs, 4 module positions for additional I/O

Auxiliary supply /binary input voltage
30 V DC auxiliary, 30 V DC binary input 30 V DC auxiliary, 48 V DC binary input 48/110 V DC auxiliary, 30 V DC binary input 48/110 V DC auxiliary, 48 V DC binary input ${ }^{1}$) 48/110 V DC auxiliary, 110 V DC low burden binary input 220 V DC auxiliary, 110 V DC low burden binary input
 220 V DC auxiliary, 220 V DC low burden binary input

Additional I/O Modules ${ }^{2}$)
19 Binary Inputs / 21 Binary Outputs (incl. 3 changeover), 2 modules 27 Binary Inputs / 29 Binary Outputs (incl. 3 changeover), 3 modules
27 Binary Inputs $/ 29$ Binary Outputs (incl. 3 changeover and $4 \mathrm{~N} / \mathrm{C}$), 3 modules
27 Binary Inputs / 13 Binary Outputs (incl. 3 changeover), 2 modules
35 Binary Inputs / 37 Binary Outputs (incl. 3 changeover), 4 modules 43 Binary Inputs / 45 Binary Outputs (incl. 3 changeover), 5 modules 43 Binary Inputs / 45 Binary Outputs (incl. 3 changeover AND 4 N/C), 5 modules
51 Binary Inputs / 53 Binary Outputs (incl. 3 changeover), 6 modules
59 Binary Inputs / 45 Binary Outputs (incl. 3 changeover), 6 modules
35 Binary Inputs / 37 Binary Outputs (incl. 3 changeover and 4 N/C), 4 modules

Frequency
Not applicable
50 Hz
60 Hz
Nominal current
1/5 A

Voltage inputs
Not applicable
63.5/110 V AC

Housing size
Case size E16 (4U high)
Communication interface
Fibre optic (ST-connector) / IEC 60870-5-103 or Modbus RTU

[^1]Published by and copyright © 2010:
Siemens AG
Energy Sector
Freyeslebenstrasse 1
91058 Erlangen, Germany
Siemens Protection Devices Limited
P.O. Box 8

North Farm Road
Hebburn
Tyne \& Wear
NE31 1TZ
United Kingdom
Phone: +44 (0)191 4017901
Fax: $\quad+44$ (0)191 4015575
www.siemens.com/energy
For more information, please contact our
Customer Support Center.
Phone: +49 180/524 7000
Fax: $\quad+49$ 180/524 24 71(Charges depending on provider)
E-mail: support.energy@siemens.com
Power Distribution Division Order No. E53000-K7076-C1-1
Printed in Fürth

Printed on elementary chlorine-free bleached paper.

All rights reserved.
Trademarks mentioned in this document are the property of Siemens AG, its affiliates, or their respective owners.

Subject to change without prior notice.
The information in this document contains general
descriptions of the technical options available, which
may not apply in all cases. The required technical
options should therefore be specified in the contract.

[^0]: 1) These binary inputs may be used from $110 / 125 \mathrm{~V} \& 220 / 250 \mathrm{~V}$ via external dropper resistors, order combination of the following resistor
 boxes to suit number of binary inputs.
[^1]: These binary inputs may be used from $110 / 125 \mathrm{~V} \& 220 / 250 \mathrm{~V}$ via external dropper resistors, order combination of the following resistor boxes to suit number of binary inputs 2512H10064 (9 inputs, 110/125V) 2512 H 10065 (5 inputs, $110 / 125 \mathrm{~V}$) 2512H10066 (1 inputs, 1101125 V)
 $220 / 250 \mathrm{~V}$ application, order resistor box 2512 H 10066 in addition 2512 H 10067 (5 inputs, $220 / 250 \mathrm{~V}$)
 2512 H 10068 (1 inputs, $220 / 250 \mathrm{~V}$)
 ${ }^{2}$) Additional input/output modules must not exceed available module positions.

